2004年09月13日 星期一 11:32
对那个机器人有点兴趣,不过不知道有没有python版的 ----- Original Message ----- From: "Zoom.Quiet" <zoomq at infopro.cn> To: "pl w" <python-chinese at lists.python.cn> Sent: Monday, September 13, 2004 11:07 AM Subject: Re[2]: [python-chinese] 一个关于智能模拟的Python程序 > Hollo pl: > > 咦咦咦? > http://www.robochina.org/document.php?cid=8 > 等等!有非常高水平的综合文章 哪?!?!? > > 简单就是美! > 如果非要机器人理解各种房间的情况,那未是没有底儿的工作了! > > 想象一下子,人来打扫房间是如何的?!?!? > > 第一次,去一个未知的大楼打扫,如何的?!?!? > > 嘿嘿嘿!让机器人有学习能力,而不是预先分析,更加简单而且好用! > > > /******** [2004-09-13]11:00:30 ; pl wrote: > > pl w> 是否可以这样,你用一个列表A把要走的这些格给标个号,每走一步从A中pop出这个格的标号。如果A列表中没有数字时,那就是整个都扫完了。然后再选取个最短路径到另一个ROOM > > > > pl w> Wang Chao <cnw at vip.sina.com> wrote: > pl w> 老大,那个地方好像人气不足,我也没找到tank设计的相关东西。 > pl w> 但我感觉还是有问题的,应该不是自动走遍所有房间这么简单。 > 前进->>是房间->清扫否?->左转或是右转->是墙?->左转或是右转 > pl w> 除了这些,我还有一个约束条件是清扫过没有,先机算能否上下左右这么走,假如不靠墙能走,就开始去自己的记忆库里搜索打扫过没有,假如清扫过,就不再进入。 > > >> Wang Chao> 假设房间是 > >> Wang Chao> 00 01 02 > >> Wang Chao> 10 11 12 > >> Wang Chao> 20 21 22 > > > pl w> 假如我从01开始走,轨迹为 00 -> 10 -> 20 -> 21 -> 11 -> 12 > pl w> ,走到这个位置,就只能随机判断下一步是走02 还是 22 > pl w> 但不管走到哪里,都将导致另外一个房间不会被打扫,因为根据碰墙约束和清扫状态约束,机器人就锁死到那个位置了。假如我把清扫状态约束去掉,那岂不是天下大乱了? > > > pl w> ----- Original Message ----- > pl w> From: "Zoom.Quiet" > pl w> To: "Wang Chao" > > pl w> Sent: Sunday, September 12, 2004 1:04 AM > pl w> Subject: Re: [python-chinese] 一个关于智能模拟的Python程序 > > > >> Hollo Wang: > >> > >> 哈哈哈!! > >> 去: > >> http://www.robochina.org/index.php > >> 看一下子,就知道你这个极类似于最傻的tank 设计, > >> 仅仅是要 可以自动走遍所有房间是也乎!! > >> > >> 其实可以蠕虫,又瞎又聋的,仅仅靠摸索吃过幼年期, > >> > >> 本身是个简单的自动吸尘机器人,不用停,只要 > >> 前进->是房间->清扫否?->左转或是右转->是墙?->左转或是右转 > >> > >> 就可以了! > >> 然后,想法子,打印出路线就可以知道最简单逻辑是否可行! > >> > >> > >> /******** [2004-9-12]15:57:50 ; Wang wrote: > >> > >> Wang Chao> > >> 有一个人工智能相关Python小程序,偶明白是要的什么东西,但是在系统如何走路上想不出来好的算法,而且因为刚接触Python,很多语句也不会写。 > >> > >> Wang Chao> 希望大家帮忙看一下。 谢谢~~~~~~。详细情况是这样的 > >> > >> > >> Wang Chao> > >> 现在已经有environment.py和Agents.py两个文件(代码附最后) > >> > >> Wang Chao> > >> 他们用来模拟吸尘器系统来执行一个1*2房间的清扫工作,但是目前的代码里没有任何智能,所以他会随机选择他的三个行动之一(左转,右转,洗尘),而不是根据判断当前的情况来选择行动。 > >> > >> >>>> import environment > >> >>>> from Agents import * > >> >>>> v=environment.VacuumEnvironment() > >> >>>> r=RandomAgent(agent_actions) > >> >>>> v.add_agent(r) > >> > >> >>>> v.run(10) > >> Wang Chao> Initial room config: {(1, 0): 'Dirty', (0, 0): 'Dirty'} > >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left > >> Wang Chao> Percept: ((0, 0), 'Dirty') Action: Suck > >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Suck > >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Right > >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left > >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Right > >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left > >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Left > >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Left > >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Suck > >> Wang Chao> Final room config: {(1, 0): 'Dirty', (0, 0): 'Clean'} > >> > >> Wang Chao> > >> 这就是执行的结果,当然,房间的初始状态也是随机的,系统的动作也是随机的,所以每次执行都不一样。 > >> > >> > >> Wang Chao> > >> 现在要想通过扩展原始代码,将房间环境扩展为3*3大小{(0,0),(0,1),(0.2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)},房间初始状态依然是随机,并且吸尘器的初始位置也随机。要求首先保证所有的房间都会被清扫,其次尽量减少系统的行动次数。 > >> Wang Chao> > >> 因为房间是3*3了,所以自然而然行动就变成了五个“上,下,左,右,洗尘” > >> > >> Wang Chao> 要重写原来的def percept(self, agent): > >> Wang Chao> 来返回吸尘器当前看到的状态 > >> > >> Wang Chao> 重写原来的execute_action(self, agent, action): > >> Wang Chao> 通过吸尘器的行动,改变对应的环境状态。 > >> > >> Wang Chao> > >> 刚接触Python,这两个东西还不太会写。不知道能否给出参考代码。 > >> > >> Wang Chao> 更困惑的是关于如何走路的算法。 > >> Wang Chao> 假设房间是 > >> Wang Chao> 00 01 02 > >> Wang Chao> 10 11 12 > >> Wang Chao> 20 21 22 > >> Wang Chao> > >> 我可以规定到了第一个数字是0就不再执行up的动作,第二个数字是2就不再执行right的动作,类似这样的规则来限制系统的动作执行。但是系统不能因为能走就要走,还要有一个限制,如果已经走过了,是不应该再走的。但是假如我走到了21这个位置,该怎么走随随机选择一个么?假如随机后走到了20,然后发现10和21都走过了,那样岂不是就再也出不去了,22这个房间就再也不能被清扫了。 > >> Wang Chao> 这本身就是矛盾的。 > >> Wang Chao> 比较困惑,不知道有什么好的方法来解决这样的问题。 > >> > >> Wang Chao> > >> 我能想到的是根据9种可能的初始房间号,写9个行走线路,来实现清扫,但这样显然就没有任何智能而言,假如房间扩大到10*10,这个代码就没法写了。 > >> > >> Wang Chao> 冥思苦想了两天了,始终不得其解,郁闷~~ > >> > >> Wang Chao> 附:environment.py > >> > >> Wang Chao> import random > >> > >> Wang Chao> class Environment: > >> Wang Chao> """Abstract class representing an > >> Wang Chao> Environment. 'Real' Environment classes > >> Wang Chao> inherit from this. Your Environment will > >> Wang Chao> typically need to implement: > >> Wang Chao> percept: Define the percept that an agent sees. > >> Wang Chao> execute_action: Define the effects of executing an action. > >> Wang Chao> Also update the agent.performance slot. > >> Wang Chao> The environment keeps a list of .objects > >> Wang Chao> and .agents (which is a subset > >> Wang Chao> of .objects). Each agent has a .performance slot, initialized to 0. > >> Wang Chao> Each object has a .location slot, even > >> Wang Chao> though some environments may not > >> Wang Chao> need this.""" > >> > >> Wang Chao> def __init__(self,): > >> Wang Chao> self.objects = [] > >> Wang Chao> self.agents = [] > >> > >> Wang Chao> object_classes = [] ## List of classes > >> Wang Chao> that can go into environment > >> > >> Wang Chao> def percept(self, agent): > >> Wang Chao> "Return the percept that the agent sees at > >> Wang Chao> this point. Override this." > >> Wang Chao> abstract() > >> > >> Wang Chao> def execute_action(self, agent, action): > >> Wang Chao> "Change the world to reflect this action. Override this." > >> Wang Chao> abstract() > >> > >> Wang Chao> def default_location(self, object): > >> Wang Chao> "Default location to place a new object with unspecified location." > >> Wang Chao> return None > >> > >> Wang Chao> def exogenous_change(self): > >> Wang Chao> "If there is spontaneous change in the world, override this." > >> Wang Chao> pass > >> > >> Wang Chao> def is_done(self): > >> Wang Chao> "By default, we're done when we can't find a live agent." > >> Wang Chao> return False > >> > >> Wang Chao> def step(self): > >> Wang Chao> """Run the environment for one time step. If the > >> Wang Chao> actions and exogenous changes are independent, this method will > >> Wang Chao> do. If there are interactions between them, you'll need to > >> Wang Chao> override this method.""" > >> Wang Chao> if not self.is_done(): > >> Wang Chao> actions = [agent.program(self.percept(agent)) > >> Wang Chao> for agent in self.agents] > >> Wang Chao> for (agent, action) in > >> Wang Chao> zip(self.agents, actions): > >> Wang Chao> self.execute_action(agent, action) > >> Wang Chao> self.exogenous_change() > >> > >> Wang Chao> def run(self, steps=1000): > >> Wang Chao> """Run the Environment for given number of time steps.""" > >> Wang Chao> self.printInitialState() > >> Wang Chao> for step in range(steps): > >> Wang Chao> if self.is_done(): > >> Wang Chao> self.printFinalState() > >> Wang Chao> return > >> Wang Chao> self.step() > >> Wang Chao> self.printFinalState() > >> > >> Wang Chao> def printInitialState(self) : > >> Wang Chao> """ SHow the initial problem state """ > >> Wang Chao> pass > >> > >> Wang Chao> def printFinalState(self) : > >> Wang Chao> """ SHow the final problem state """ > >> Wang Chao> pass > >> > >> Wang Chao> def add_object(self, object, location=None): > >> Wang Chao> """Add an object to the environment, setting its location. Also keep > >> Wang Chao> track of objects that are agents. Shouldn't > >> Wang Chao> need to override this.""" > >> Wang Chao> object.location = location or > >> Wang Chao> self.default_location(object) > >> Wang Chao> self.objects.append(object) > >> Wang Chao> if isinstance(object, Agent): > >> Wang Chao> object.performance = 0 > >> Wang Chao> self.agents.append(object) > >> Wang Chao> return self > >> > >> Wang Chao> def add_agent(self, ag, location=None) : > >> Wang Chao> """Add an agent to the environment""" > >> Wang Chao> ag.location = location or self.default_location(ag) > >> Wang Chao> ag.performance = 0 > >> Wang Chao> self.agents.append(ag) > >> Wang Chao> return self > >> > >> > >> > >> Wang Chao> class VacuumEnvironment (Environment) : > >> Wang Chao> def __init__(self): > >> Wang Chao> Environment.__init__(self) > >> Wang Chao> self.status = > >> Wang Chao> {(0,0):random.choice(['Clean', 'Dirty']), > >> Wang Chao> > >> Wang Chao> (1,0):random.choice(['Clean', 'Dirty'])} > >> Wang Chao> def percept(self, agent): > >> Wang Chao> "Returns the agent's location, and the > >> Wang Chao> location status (Dirty/Clean)." > >> Wang Chao> return (agent.location, > >> Wang Chao> self.status[agent.location]) > >> > >> Wang Chao> def printInitialState(self) : > >> Wang Chao> """ Show the initial problem state """ > >> Wang Chao> print "Initial room config: ", self.status > >> > >> Wang Chao> def printFinalState(self) : > >> Wang Chao> """ Show the final problem state """ > >> Wang Chao> print "Final room config: ", self.status > >> > >> > >> > >> > >> Wang Chao> def execute_action(self, agent, action): > >> Wang Chao> """Change agent's location and/or > >> Wang Chao> location's status; track performance. > >> Wang Chao> Score 10 for each dirt cleaned; -1 for each move.""" > >> Wang Chao> if action == 'Right': > >> Wang Chao> agent.location = (1,0) > >> Wang Chao> agent.performance -= 1 > >> Wang Chao> elif action == 'Left': > >> Wang Chao> agent.location = (0,0) > >> Wang Chao> agent.performance -= 1 > >> Wang Chao> elif action == 'Suck': > >> Wang Chao> if self.status[agent.location] == 'Dirty': > >> Wang Chao> agent.performance += 10 > >> Wang Chao> self.status[agent.location] = 'Clean' > >> > >> Wang Chao> def default_location(self, object): > >> Wang Chao> "Agents start in either location at random." > >> Wang Chao> return random.choice([(0,0), (1,0)]) > >> > >> > >> > >> > >> > >> > >> Wang Chao> 附:Agents.py > >> > >> > >> > >> Wang Chao> import random > >> > >> Wang Chao> ### global variable holding all possible agent actions > >> Wang Chao> agent_actions = ['Left', 'Right', 'Suck'] > >> > >> > >> Wang Chao> class Agent : > >> Wang Chao> """An Agent is a subclass of Object with one required slot, > >> Wang Chao> .program, which should hold a function that takes one argument, the > >> Wang Chao> percept, and returns an action. (What > >> Wang Chao> counts as a percept or action > >> Wang Chao> will depend on the specific environment in > >> Wang Chao> which the agent exists.) > >> Wang Chao> Note that 'program' is a slot, not a > >> Wang Chao> method. If it were a method, > >> Wang Chao> then the program could 'cheat' and look at aspects of the agent. > >> Wang Chao> It's not supposed to do that: the program can only look at the > >> Wang Chao> percepts. An agent program that needs a > >> Wang Chao> model of the world (and of > >> Wang Chao> the agent itself) will have to build and maintain its own model. > >> Wang Chao> There is an optional slots, .performance, > >> Wang Chao> which is a number giving > >> Wang Chao> the performance measure of the agent in its environment.""" > >> > >> Wang Chao> def __init__(self): > >> Wang Chao> self.alive = True > >> > >> Wang Chao> def program(percept): > >> Wang Chao> return raw_input('Percept=%s; action? ' % percept) > >> > >> > >> Wang Chao> ### In the 2 room environment, there are three > >> Wang Chao> actions: Left, Right and Suck > >> > >> Wang Chao> class RandomAgent(Agent): > >> Wang Chao> "An agent that chooses an action at random, ignoring all percepts." > >> Wang Chao> def __init__(self, actions): > >> Wang Chao> self.actions = actions > >> > >> Wang Chao> def program(self, percept) : > >> Wang Chao> action = random.choice(self.actions) > >> Wang Chao> print "Percept: %s Action: %s" % (percept, action) > >> Wang Chao> return action > >> > >> > >> > >> ********************************************/ > >> > >> -- > >> Free as in Freedom > >> > >> Zoom.Quiet > >> > >> #=========================================# > >> ]Time is unimportant, only life important![ > >> #=========================================# > >> > >> sender is the Bat!3.0 > >> > >> _______________________________________________ > >> python-chinese list > >> python-chinese at lists.python.cn > >> http://python.cn/mailman/listinfo/python-chinese > >> > >> _______________________________________________ > pl w> python-chinese list > pl w> python-chinese at lists.python.cn > pl w> http://python.cn/mailman/listinfo/python-chinese > > > > > > > pl w> perrin > pl w> pl_cs at yahoo.com.cn > > pl w> 祝你有美好的每一天~ > pl w> -----让我们共同抑制日货,振兴中国 > > > > pl w> --------------------------------- > pl w> Do You Yahoo!? > pl w> 150万曲MP3疯狂搜,带您闯入音乐殿堂 > pl w> 美女明星应有尽有,搜遍美图、艳图和酷图 > pl w> 1G就是1000兆,雅虎电邮自助扩容! > > > ********************************************/ > > -- > Free as in Freedom > > Zoom.Quiet > > #=========================================# > ]Time is unimportant, only life important![ > #=========================================# > > sender is the Bat!3.0 > -------------------------------------------------------------------------------- > _______________________________________________ > python-chinese list > python-chinese at lists.python.cn > http://python.cn/mailman/listinfo/python-chinese >
2004年09月13日 星期一 11:41
Hollo tocer: 嘿嘿嘿!好好看文档! 当初在下冲入的,就是因为可以使用 Jython 来创造 Java 的 RoboCode Tank!!!! 哈哈哈! 可惜 Jython 没有跟上 Python 和 JAVA 的发展,一直没有成功! /******** [2004-09-13]11:40:02 ; tocer wrote: tocer> 对那个机器人有点兴趣,不过不知道有没有python版的 tocer> ----- Original Message ----- tocer> From: "Zoom.Quiet" <zoomq at infopro.cn> tocer> To: "pl w" <python-chinese at lists.python.cn> tocer> Sent: Monday, September 13, 2004 11:07 AM tocer> Subject: Re[2]: [python-chinese] 一个关于智能模拟的Python程序 >> Hollo pl: >> >> 咦咦咦? >> http://www.robochina.org/document.php?cid=8 >> 等等!有非常高水平的综合文章 哪?!?!? >> >> 简单就是美! >> 如果非要机器人理解各种房间的情况,那未是没有底儿的工作了! >> >> 想象一下子,人来打扫房间是如何的?!?!? >> >> 第一次,去一个未知的大楼打扫,如何的?!?!? >> >> 嘿嘿嘿!让机器人有学习能力,而不是预先分析,更加简单而且好用! >> >> >> /******** [2004-09-13]11:00:30 ; pl wrote: >> >> pl w> >> 是否可以这样,你用一个列表A把要走的这些格给标个号,每走一步从A中pop出这个格的标号。如果A列表中没有数字时,那就是整个都扫完了。然后再选取个最短路径到另一个ROOM >> >> >> >> pl w> Wang Chao <cnw at vip.sina.com> wrote: >> pl w> 老大,那个地方好像人气不足,我也没找到tank设计的相关东西。 >> pl w> 但我感觉还是有问题的,应该不是自动走遍所有房间这么简单。 >> 前进->>是房间->清扫否?->左转或是右转->是墙?->左转或是右转 >> pl w> >> 除了这些,我还有一个约束条件是清扫过没有,先机算能否上下左右这么走,假如不靠墙能走,就开始去自己的记忆库里搜索打扫过没有,假如清扫过,就不再进入。 >> >> >> Wang Chao> 假设房间是 >> >> Wang Chao> 00 01 02 >> >> Wang Chao> 10 11 12 >> >> Wang Chao> 20 21 22 >> >> >> pl w> 假如我从01开始走,轨迹为 00 -> 10 -> 20 -> 21 -> 11 -> 12 >> pl w> ,走到这个位置,就只能随机判断下一步是走02 还是 22 >> pl w> >> 但不管走到哪里,都将导致另外一个房间不会被打扫,因为根据碰墙约束和清扫状态约束,机器人就锁死到那个位置了。假如我把清扫状态约束去掉,那岂不是天下大乱了? >> >> >> pl w> ----- Original Message ----- >> pl w> From: "Zoom.Quiet" >> pl w> To: "Wang Chao" >> >> pl w> Sent: Sunday, September 12, 2004 1:04 AM >> pl w> Subject: Re: [python-chinese] 一个关于智能模拟的Python程序 >> >> >> >> Hollo Wang: >> >> >> >> 哈哈哈!! >> >> 去: >> >> http://www.robochina.org/index.php >> >> 看一下子,就知道你这个极类似于最傻的tank 设计, >> >> 仅仅是要 可以自动走遍所有房间是也乎!! >> >> >> >> 其实可以蠕虫,又瞎又聋的,仅仅靠摸索吃过幼年期, >> >> >> >> 本身是个简单的自动吸尘机器人,不用停,只要 >> >> 前进->是房间->清扫否?->左转或是右转->是墙?->左转或是右转 >> >> >> >> 就可以了! >> >> 然后,想法子,打印出路线就可以知道最简单逻辑是否可行! >> >> >> >> >> >> /******** [2004-9-12]15:57:50 ; Wang wrote: >> >> >> >> Wang Chao> >> >> >> 有一个人工智能相关Python小程序,偶明白是要的什么东西,但是在系统如何走路上想不出来好的算法,而且因为刚接触Python,很多语句也不会写。 >> >> >> >> Wang Chao> 希望大家帮忙看一下。 谢谢~~~~~~。详细情况是这样的 >> >> >> >> >> >> Wang Chao> >> >> 现在已经有environment.py和Agents.py两个文件(代码附最后) >> >> >> >> Wang Chao> >> >> >> 他们用来模拟吸尘器系统来执行一个1*2房间的清扫工作,但是目前的代码里没有任何智能,所以他会随机选择他的三个行动之一(左转,右转,洗尘),而不是根据判断当前的情况来选择行动。 >> >> >> >> >>>> import environment >> >> >>>> from Agents import * >> >> >>>> v=environment.VacuumEnvironment() >> >> >>>> r=RandomAgent(agent_actions) >> >> >>>> v.add_agent(r) >> >> >> >> >>>> v.run(10) >> >> Wang Chao> Initial room config: {(1, 0): 'Dirty', (0, 0): 'Dirty'} >> >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left >> >> Wang Chao> Percept: ((0, 0), 'Dirty') Action: Suck >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Suck >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Right >> >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Right >> >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Left >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Left >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Suck >> >> Wang Chao> Final room config: {(1, 0): 'Dirty', (0, 0): 'Clean'} >> >> >> >> Wang Chao> >> >> >> 这就是执行的结果,当然,房间的初始状态也是随机的,系统的动作也是随机的,所以每次执行都不一样。 >> >> >> >> >> >> Wang Chao> >> >> >> 现在要想通过扩展原始代码,将房间环境扩展为3*3大小{(0,0),(0,1),(0.2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)},房间初始状态依然是随机,并且吸尘器的初始位置也随机。要求首先保证所有的房间都会被清扫,其次尽量减少系统的行动次数。 >> >> Wang Chao> >> >> >> 因为房间是3*3了,所以自然而然行动就变成了五个“上,下,左,右,洗尘” >> >> >> >> Wang Chao> 要重写原来的def percept(self, agent): >> >> Wang Chao> 来返回吸尘器当前看到的状态 >> >> >> >> Wang Chao> 重写原来的execute_action(self, agent, action): >> >> Wang Chao> 通过吸尘器的行动,改变对应的环境状态。 >> >> >> >> Wang Chao> >> >> 刚接触Python,这两个东西还不太会写。不知道能否给出参考代码。 >> >> >> >> Wang Chao> 更困惑的是关于如何走路的算法。 >> >> Wang Chao> 假设房间是 >> >> Wang Chao> 00 01 02 >> >> Wang Chao> 10 11 12 >> >> Wang Chao> 20 21 22 >> >> Wang Chao> >> >> >> 我可以规定到了第一个数字是0就不再执行up的动作,第二个数字是2就不再执行right的动作,类似这样的规则来限制系统的动作执行。但是系统不能因为能走就要走,还要有一个限制,如果已经走过了,是不应该再走的。但是假如我走到了21这个位置,该怎么走随随机选择一个么?假如随机后走到了20,然后发现10和21都走过了,那样岂不是就再也出不去了,22这个房间就再也不能被清扫了。 >> >> Wang Chao> 这本身就是矛盾的。 >> >> Wang Chao> 比较困惑,不知道有什么好的方法来解决这样的问题。 >> >> >> >> Wang Chao> >> >> >> 我能想到的是根据9种可能的初始房间号,写9个行走线路,来实现清扫,但这样显然就没有任何智能而言,假如房间扩大到10*10,这个代码就没法写了。 >> >> >> >> Wang Chao> 冥思苦想了两天了,始终不得其解,郁闷~~ >> >> >> >> Wang Chao> 附:environment.py >> >> >> >> Wang Chao> import random >> >> >> >> Wang Chao> class Environment: >> >> Wang Chao> """Abstract class representing an >> >> Wang Chao> Environment. 'Real' Environment classes >> >> Wang Chao> inherit from this. Your Environment will >> >> Wang Chao> typically need to implement: >> >> Wang Chao> percept: Define the percept that an agent sees. >> >> Wang Chao> execute_action: Define the effects of executing an action. >> >> Wang Chao> Also update the agent.performance slot. >> >> Wang Chao> The environment keeps a list of .objects >> >> Wang Chao> and .agents (which is a subset >> >> Wang Chao> of .objects). Each agent has a .performance slot, initialized to 0. >> >> Wang Chao> Each object has a .location slot, even >> >> Wang Chao> though some environments may not >> >> Wang Chao> need this.""" >> >> >> >> Wang Chao> def __init__(self,): >> >> Wang Chao> self.objects = [] >> >> Wang Chao> self.agents = [] >> >> >> >> Wang Chao> object_classes = [] ## List of classes >> >> Wang Chao> that can go into environment >> >> >> >> Wang Chao> def percept(self, agent): >> >> Wang Chao> "Return the percept that the agent sees at >> >> Wang Chao> this point. Override this." >> >> Wang Chao> abstract() >> >> >> >> Wang Chao> def execute_action(self, agent, action): >> >> Wang Chao> "Change the world to reflect this action. Override this." >> >> Wang Chao> abstract() >> >> >> >> Wang Chao> def default_location(self, object): >> >> Wang Chao> "Default location to place a new object with unspecified location." >> >> Wang Chao> return None >> >> >> >> Wang Chao> def exogenous_change(self): >> >> Wang Chao> "If there is spontaneous change in the world, override this." >> >> Wang Chao> pass >> >> >> >> Wang Chao> def is_done(self): >> >> Wang Chao> "By default, we're done when we can't find a live agent." >> >> Wang Chao> return False >> >> >> >> Wang Chao> def step(self): >> >> Wang Chao> """Run the environment for one time step. If the >> >> Wang Chao> actions and exogenous changes are independent, this method will >> >> Wang Chao> do. If there are interactions between them, you'll need to >> >> Wang Chao> override this method.""" >> >> Wang Chao> if not self.is_done(): >> >> Wang Chao> actions = [agent.program(self.percept(agent)) >> >> Wang Chao> for agent in self.agents] >> >> Wang Chao> for (agent, action) in >> >> Wang Chao> zip(self.agents, actions): >> >> Wang Chao> self.execute_action(agent, action) >> >> Wang Chao> self.exogenous_change() >> >> >> >> Wang Chao> def run(self, steps=1000): >> >> Wang Chao> """Run the Environment for given number of time steps.""" >> >> Wang Chao> self.printInitialState() >> >> Wang Chao> for step in range(steps): >> >> Wang Chao> if self.is_done(): >> >> Wang Chao> self.printFinalState() >> >> Wang Chao> return >> >> Wang Chao> self.step() >> >> Wang Chao> self.printFinalState() >> >> >> >> Wang Chao> def printInitialState(self) : >> >> Wang Chao> """ SHow the initial problem state """ >> >> Wang Chao> pass >> >> >> >> Wang Chao> def printFinalState(self) : >> >> Wang Chao> """ SHow the final problem state """ >> >> Wang Chao> pass >> >> >> >> Wang Chao> def add_object(self, object, location=None): >> >> Wang Chao> """Add an object to the environment, setting its location. Also keep >> >> Wang Chao> track of objects that are agents. Shouldn't >> >> Wang Chao> need to override this.""" >> >> Wang Chao> object.location = location or >> >> Wang Chao> self.default_location(object) >> >> Wang Chao> self.objects.append(object) >> >> Wang Chao> if isinstance(object, Agent): >> >> Wang Chao> object.performance = 0 >> >> Wang Chao> self.agents.append(object) >> >> Wang Chao> return self >> >> >> >> Wang Chao> def add_agent(self, ag, location=None) : >> >> Wang Chao> """Add an agent to the environment""" >> >> Wang Chao> ag.location = location or self.default_location(ag) >> >> Wang Chao> ag.performance = 0 >> >> Wang Chao> self.agents.append(ag) >> >> Wang Chao> return self >> >> >> >> >> >> >> >> Wang Chao> class VacuumEnvironment (Environment) : >> >> Wang Chao> def __init__(self): >> >> Wang Chao> Environment.__init__(self) >> >> Wang Chao> self.status = >> >> Wang Chao> {(0,0):random.choice(['Clean', 'Dirty']), >> >> Wang Chao> >> >> Wang Chao> (1,0):random.choice(['Clean', 'Dirty'])} >> >> Wang Chao> def percept(self, agent): >> >> Wang Chao> "Returns the agent's location, and the >> >> Wang Chao> location status (Dirty/Clean)." >> >> Wang Chao> return (agent.location, >> >> Wang Chao> self.status[agent.location]) >> >> >> >> Wang Chao> def printInitialState(self) : >> >> Wang Chao> """ Show the initial problem state """ >> >> Wang Chao> print "Initial room config: ", self.status >> >> >> >> Wang Chao> def printFinalState(self) : >> >> Wang Chao> """ Show the final problem state """ >> >> Wang Chao> print "Final room config: ", self.status >> >> >> >> >> >> >> >> >> >> Wang Chao> def execute_action(self, agent, action): >> >> Wang Chao> """Change agent's location and/or >> >> Wang Chao> location's status; track performance. >> >> Wang Chao> Score 10 for each dirt cleaned; -1 for each move.""" >> >> Wang Chao> if action == 'Right': >> >> Wang Chao> agent.location = (1,0) >> >> Wang Chao> agent.performance -= 1 >> >> Wang Chao> elif action == 'Left': >> >> Wang Chao> agent.location = (0,0) >> >> Wang Chao> agent.performance -= 1 >> >> Wang Chao> elif action == 'Suck': >> >> Wang Chao> if self.status[agent.location] == 'Dirty': >> >> Wang Chao> agent.performance += 10 >> >> Wang Chao> self.status[agent.location] = 'Clean' >> >> >> >> Wang Chao> def default_location(self, object): >> >> Wang Chao> "Agents start in either location at random." >> >> Wang Chao> return random.choice([(0,0), (1,0)]) >> >> >> >> >> >> >> >> >> >> >> >> >> >> Wang Chao> 附:Agents.py >> >> >> >> >> >> >> >> Wang Chao> import random >> >> >> >> Wang Chao> ### global variable holding all possible agent actions >> >> Wang Chao> agent_actions = ['Left', 'Right', 'Suck'] >> >> >> >> >> >> Wang Chao> class Agent : >> >> Wang Chao> """An Agent is a subclass of Object with one required slot, >> >> Wang Chao> .program, which should hold a function that takes one argument, the >> >> Wang Chao> percept, and returns an action. (What >> >> Wang Chao> counts as a percept or action >> >> Wang Chao> will depend on the specific environment in >> >> Wang Chao> which the agent exists.) >> >> Wang Chao> Note that 'program' is a slot, not a >> >> Wang Chao> method. If it were a method, >> >> Wang Chao> then the program could 'cheat' and look at aspects of the agent. >> >> Wang Chao> It's not supposed to do that: the program can only look at the >> >> Wang Chao> percepts. An agent program that needs a >> >> Wang Chao> model of the world (and of >> >> Wang Chao> the agent itself) will have to build and maintain its own model. >> >> Wang Chao> There is an optional slots, .performance, >> >> Wang Chao> which is a number giving >> >> Wang Chao> the performance measure of the agent in its environment.""" >> >> >> >> Wang Chao> def __init__(self): >> >> Wang Chao> self.alive = True >> >> >> >> Wang Chao> def program(percept): >> >> Wang Chao> return raw_input('Percept=%s; action? ' % percept) >> >> >> >> >> >> Wang Chao> ### In the 2 room environment, there are three >> >> Wang Chao> actions: Left, Right and Suck >> >> >> >> Wang Chao> class RandomAgent(Agent): >> >> Wang Chao> "An agent that chooses an action at random, ignoring all percepts." >> >> Wang Chao> def __init__(self, actions): >> >> Wang Chao> self.actions = actions >> >> >> >> Wang Chao> def program(self, percept) : >> >> Wang Chao> action = random.choice(self.actions) >> >> Wang Chao> print "Percept: %s Action: %s" % (percept, action) >> >> Wang Chao> return action >> >> >> >> >> >> >> >> ********************************************/ >> >> >> >> -- >> >> Free as in Freedom >> >> >> >> Zoom.Quiet >> >> >> >> #=========================================# >> >> ]Time is unimportant, only life important![ >> >> #=========================================# >> >> >> >> sender is the Bat!3.0 >> >> >> >> _______________________________________________ >> >> python-chinese list >> >> python-chinese at lists.python.cn >> >> http://python.cn/mailman/listinfo/python-chinese >> >> >> >> _______________________________________________ >> pl w> python-chinese list >> pl w> python-chinese at lists.python.cn >> pl w> http://python.cn/mailman/listinfo/python-chinese >> >> >> >> >> >> >> pl w> perrin >> pl w> pl_cs at yahoo.com.cn >> >> pl w> 祝你有美好的每一天~ >> pl w> -----让我们共同抑制日货,振兴中国 >> >> >> >> pl w> --------------------------------- >> pl w> Do You Yahoo!? >> pl w> 150万曲MP3疯狂搜,带您闯入音乐殿堂 >> pl w> 美女明星应有尽有,搜遍美图、艳图和酷图 >> pl w> 1G就是1000兆,雅虎电邮自助扩容! >> >> >> ********************************************/ >> >> -- >> Free as in Freedom >> >> Zoom.Quiet >> >> #=========================================# >> ]Time is unimportant, only life important![ >> #=========================================# >> >> sender is the Bat!3.0 >> tocer> -------------------------------------------------------------------------------- >> _______________________________________________ >> python-chinese list >> python-chinese at lists.python.cn >> http://python.cn/mailman/listinfo/python-chinese >> ********************************************/ -- Free as in Freedom Zoom.Quiet #=========================================# ]Time is unimportant, only life important![ #=========================================# sender is the Bat!3.0
2004年09月13日 星期一 11:53
> Hollo tocer: > > 嘿嘿嘿!好好看文档! > 当初在下冲入的,就是因为可以使用 Jython > 来创造 Java 的 RoboCode Tank!!!! > > 哈哈哈! > 可惜 Jython 没有跟上 Python 和 JAVA 的发展,一直没有成功! > > 如此。。。-_- 我听说的是jython已经很完美乐所以不需要放出新版本乐。。。 怎么全部一样啊? 叶涛
2004年09月13日 星期一 11:56
我想,如果用python编写,应该更适用于教学,因为python更简单。而且这种教学方法也非常有趣。 ----- Original Message ----- From: "Zoom.Quiet" <zoomq at infopro.cn> To: "tocer" <python-chinese at lists.python.cn> Sent: Monday, September 13, 2004 11:41 AM Subject: Re[4]: [python-chinese] 一个关于智能模拟的Python程序 > Hollo tocer: > > 嘿嘿嘿!好好看文档! > 当初在下冲入的,就是因为可以使用 Jython > 来创造 Java 的 RoboCode Tank!!!! > > 哈哈哈! > 可惜 Jython 没有跟上 Python 和 JAVA 的发展,一直没有成功! > > > /******** [2004-09-13]11:40:02 ; tocer wrote: > > tocer> 对那个机器人有点兴趣,不过不知道有没有python版的 > tocer> ----- Original Message ----- > tocer> From: "Zoom.Quiet" <zoomq at infopro.cn> > tocer> To: "pl w" <python-chinese at lists.python.cn> > tocer> Sent: Monday, September 13, 2004 11:07 AM > tocer> Subject: Re[2]: [python-chinese] 一个关于智能模拟的Python程序 > > > >> Hollo pl: > >> > >> 咦咦咦? > >> http://www.robochina.org/document.php?cid=8 > >> 等等!有非常高水平的综合文章 哪?!?!? > >> > >> 简单就是美! > >> 如果非要机器人理解各种房间的情况,那未是没有底儿的工作了! > >> > >> 想象一下子,人来打扫房间是如何的?!?!? > >> > >> 第一次,去一个未知的大楼打扫,如何的?!?!? > >> > >> 嘿嘿嘿!让机器人有学习能力,而不是预先分析,更加简单而且好用! > >> > >> > >> /******** [2004-09-13]11:00:30 ; pl wrote: > >> > >> pl w> > >> 是否可以这样,你用一个列表A把要走的这些格给标个号,每走一步从A中pop出这个格的标号。如果A列表中没有数字时,那就是整个都扫完了。然后再选取个最短路径到另一个ROOM > >> > >> > >> > >> pl w> Wang Chao <cnw at vip.sina.com> wrote: > >> pl w> 老大,那个地方好像人气不足,我也没找到tank设计的相关东西。 > >> pl w> 但我感觉还是有问题的,应该不是自动走遍所有房间这么简单。 > >> 前进->>是房间->清扫否?->左转或是右转->是墙?->左转或是右转 > >> pl w> > >> 除了这些,我还有一个约束条件是清扫过没有,先机算能否上下左右这么走,假如不靠墙能走,就开始去自己的记忆库里搜索打扫过没有,假如清扫过,就不再进入。 > >> > >> >> Wang Chao> 假设房间是 > >> >> Wang Chao> 00 01 02 > >> >> Wang Chao> 10 11 12 > >> >> Wang Chao> 20 21 22 > >> > >> > >> pl w> 假如我从01开始走,轨迹为 00 -> 10 -> 20 -> 21 -> 11 -> 12 > >> pl w> ,走到这个位置,就只能随机判断下一步是走02 还是 22 > >> pl w> > >> 但不管走到哪里,都将导致另外一个房间不会被打扫,因为根据碰墙约束和清扫状态约束,机器人就锁死到那个位置了。假如我把清扫状态约束去掉,那岂不是天下大乱了? > >> > >> > >> pl w> ----- Original Message ----- > >> pl w> From: "Zoom.Quiet" > >> pl w> To: "Wang Chao" > >> > >> pl w> Sent: Sunday, September 12, 2004 1:04 AM > >> pl w> Subject: Re: [python-chinese] 一个关于智能模拟的Python程序 > >> > >> > >> >> Hollo Wang: > >> >> > >> >> 哈哈哈!! > >> >> 去: > >> >> http://www.robochina.org/index.php > >> >> 看一下子,就知道你这个极类似于最傻的tank 设计, > >> >> 仅仅是要 可以自动走遍所有房间是也乎!! > >> >> > >> >> 其实可以蠕虫,又瞎又聋的,仅仅靠摸索吃过幼年期, > >> >> > >> >> 本身是个简单的自动吸尘机器人,不用停,只要 > >> >> 前进->是房间->清扫否?->左转或是右转->是墙?->左转或是右转 > >> >> > >> >> 就可以了! > >> >> 然后,想法子,打印出路线就可以知道最简单逻辑是否可行! > >> >> > >> >> > >> >> /******** [2004-9-12]15:57:50 ; Wang wrote: > >> >> > >> >> Wang Chao> > >> >> > >> 有一个人工智能相关Python小程序,偶明白是要的什么东西,但是在系统如何走路上想不出来好的算法,而且因为刚接触Python,很多语句也不会写。 > >> >> > >> >> Wang Chao> 希望大家帮忙看一下。 谢谢~~~~~~。详细情况是这样的 > >> >> > >> >> > >> >> Wang Chao> > >> >> 现在已经有environment.py和Agents.py两个文件(代码附最后) > >> >> > >> >> Wang Chao> > >> >> > >> 他们用来模拟吸尘器系统来执行一个1*2房间的清扫工作,但是目前的代码里没有任何智能,所以他会随机选择他的三个行动之一(左转,右转,洗尘),而不是根据判断当前的情况来选择行动。 > >> >> > >> >> >>>> import environment > >> >> >>>> from Agents import * > >> >> >>>> v=environment.VacuumEnvironment() > >> >> >>>> r=RandomAgent(agent_actions) > >> >> >>>> v.add_agent(r) > >> >> > >> >> >>>> v.run(10) > >> >> Wang Chao> Initial room config: {(1, 0): 'Dirty', (0, 0): 'Dirty'} > >> >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left > >> >> Wang Chao> Percept: ((0, 0), 'Dirty') Action: Suck > >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Suck > >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Right > >> >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left > >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Right > >> >> Wang Chao> Percept: ((1, 0), 'Dirty') Action: Left > >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Left > >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Left > >> >> Wang Chao> Percept: ((0, 0), 'Clean') Action: Suck > >> >> Wang Chao> Final room config: {(1, 0): 'Dirty', (0, 0): 'Clean'} > >> >> > >> >> Wang Chao> > >> >> > >> 这就是执行的结果,当然,房间的初始状态也是随机的,系统的动作也是随机的,所以每次执行都不一样。 > >> >> > >> >> > >> >> Wang Chao> > >> >> > >> 现在要想通过扩展原始代码,将房间环境扩展为3*3大小{(0,0),(0,1),(0.2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)},房间初始状态依然是随机,并且吸尘器的初始位置也随机。要求首先保证所有的房间都会被清扫,其次尽量减少系统的行动次数。 > >> >> Wang Chao> > >> >> > >> 因为房间是3*3了,所以自然而然行动就变成了五个“上,下,左,右,洗尘” > >> >> > >> >> Wang Chao> 要重写原来的def percept(self, agent): > >> >> Wang Chao> 来返回吸尘器当前看到的状态 > >> >> > >> >> Wang Chao> 重写原来的execute_action(self, agent, action): > >> >> Wang Chao> 通过吸尘器的行动,改变对应的环境状态。 > >> >> > >> >> Wang Chao> > >> >> 刚接触Python,这两个东西还不太会写。不知道能否给出参考代码。 > >> >> > >> >> Wang Chao> 更困惑的是关于如何走路的算法。 > >> >> Wang Chao> 假设房间是 > >> >> Wang Chao> 00 01 02 > >> >> Wang Chao> 10 11 12 > >> >> Wang Chao> 20 21 22 > >> >> Wang Chao> > >> >> > >> 我可以规定到了第一个数字是0就不再执行up的动作,第二个数字是2就不再执行right的动作,类似这样的规则来限制系统的动作执行。但是系统不能因为能走就要走,还要有一个限制,如果已经走过了,是不应该再走的。但是假如我走到了21这个位置,该怎么走随随机选择一个么?假如随机后走到了20,然后发现10和21都走过了,那样岂不是就再也出不去了,22这个房间就再也不能被清扫了。 > >> >> Wang Chao> 这本身就是矛盾的。 > >> >> Wang Chao> 比较困惑,不知道有什么好的方法来解决这样的问题。 > >> >> > >> >> Wang Chao> > >> >> > >> 我能想到的是根据9种可能的初始房间号,写9个行走线路,来实现清扫,但这样显然就没有任何智能而言,假如房间扩大到10*10,这个代码就没法写了。 > >> >> > >> >> Wang Chao> 冥思苦想了两天了,始终不得其解,郁闷~~ > >> >> > >> >> Wang Chao> 附:environment.py > >> >> > >> >> Wang Chao> import random > >> >> > >> >> Wang Chao> class Environment: > >> >> Wang Chao> """Abstract class representing an > >> >> Wang Chao> Environment. 'Real' Environment classes > >> >> Wang Chao> inherit from this. Your Environment will > >> >> Wang Chao> typically need to implement: > >> >> Wang Chao> percept: Define the percept that an agent sees. > >> >> Wang Chao> execute_action: Define the effects of executing an action. > >> >> Wang Chao> Also update the agent.performance slot. > >> >> Wang Chao> The environment keeps a list of .objects > >> >> Wang Chao> and .agents (which is a subset > >> >> Wang Chao> of .objects). Each agent has a .performance slot, initialized to 0. > >> >> Wang Chao> Each object has a .location slot, even > >> >> Wang Chao> though some environments may not > >> >> Wang Chao> need this.""" > >> >> > >> >> Wang Chao> def __init__(self,): > >> >> Wang Chao> self.objects = [] > >> >> Wang Chao> self.agents = [] > >> >> > >> >> Wang Chao> object_classes = [] ## List of classes > >> >> Wang Chao> that can go into environment > >> >> > >> >> Wang Chao> def percept(self, agent): > >> >> Wang Chao> "Return the percept that the agent sees at > >> >> Wang Chao> this point. Override this." > >> >> Wang Chao> abstract() > >> >> > >> >> Wang Chao> def execute_action(self, agent, action): > >> >> Wang Chao> "Change the world to reflect this action. Override this." > >> >> Wang Chao> abstract() > >> >> > >> >> Wang Chao> def default_location(self, object): > >> >> Wang Chao> "Default location to place a new object with unspecified location." > >> >> Wang Chao> return None > >> >> > >> >> Wang Chao> def exogenous_change(self): > >> >> Wang Chao> "If there is spontaneous change in the world, override this." > >> >> Wang Chao> pass > >> >> > >> >> Wang Chao> def is_done(self): > >> >> Wang Chao> "By default, we're done when we can't find a live agent." > >> >> Wang Chao> return False > >> >> > >> >> Wang Chao> def step(self): > >> >> Wang Chao> """Run the environment for one time step. If the > >> >> Wang Chao> actions and exogenous changes are independent, this method will > >> >> Wang Chao> do. If there are interactions between them, you'll need to > >> >> Wang Chao> override this method.""" > >> >> Wang Chao> if not self.is_done(): > >> >> Wang Chao> actions = [agent.program(self.percept(agent)) > >> >> Wang Chao> for agent in self.agents] > >> >> Wang Chao> for (agent, action) in > >> >> Wang Chao> zip(self.agents, actions): > >> >> Wang Chao> self.execute_action(agent, action) > >> >> Wang Chao> self.exogenous_change() > >> >> > >> >> Wang Chao> def run(self, steps=1000): > >> >> Wang Chao> """Run the Environment for given number of time steps.""" > >> >> Wang Chao> self.printInitialState() > >> >> Wang Chao> for step in range(steps): > >> >> Wang Chao> if self.is_done(): > >> >> Wang Chao> self.printFinalState() > >> >> Wang Chao> return > >> >> Wang Chao> self.step() > >> >> Wang Chao> self.printFinalState() > >> >> > >> >> Wang Chao> def printInitialState(self) : > >> >> Wang Chao> """ SHow the initial problem state """ > >> >> Wang Chao> pass > >> >> > >> >> Wang Chao> def printFinalState(self) : > >> >> Wang Chao> """ SHow the final problem state """ > >> >> Wang Chao> pass > >> >> > >> >> Wang Chao> def add_object(self, object, location=None): > >> >> Wang Chao> """Add an object to the environment, setting its location. Also keep > >> >> Wang Chao> track of objects that are agents. Shouldn't > >> >> Wang Chao> need to override this.""" > >> >> Wang Chao> object.location = location or > >> >> Wang Chao> self.default_location(object) > >> >> Wang Chao> self.objects.append(object) > >> >> Wang Chao> if isinstance(object, Agent): > >> >> Wang Chao> object.performance = 0 > >> >> Wang Chao> self.agents.append(object) > >> >> Wang Chao> return self > >> >> > >> >> Wang Chao> def add_agent(self, ag, location=None) : > >> >> Wang Chao> """Add an agent to the environment""" > >> >> Wang Chao> ag.location = location or self.default_location(ag) > >> >> Wang Chao> ag.performance = 0 > >> >> Wang Chao> self.agents.append(ag) > >> >> Wang Chao> return self > >> >> > >> >> > >> >> > >> >> Wang Chao> class VacuumEnvironment (Environment) : > >> >> Wang Chao> def __init__(self): > >> >> Wang Chao> Environment.__init__(self) > >> >> Wang Chao> self.status = > >> >> Wang Chao> {(0,0):random.choice(['Clean', 'Dirty']), > >> >> Wang Chao> > >> >> Wang Chao> (1,0):random.choice(['Clean', 'Dirty'])} > >> >> Wang Chao> def percept(self, agent): > >> >> Wang Chao> "Returns the agent's location, and the > >> >> Wang Chao> location status (Dirty/Clean)." > >> >> Wang Chao> return (agent.location, > >> >> Wang Chao> self.status[agent.location]) > >> >> > >> >> Wang Chao> def printInitialState(self) : > >> >> Wang Chao> """ Show the initial problem state """ > >> >> Wang Chao> print "Initial room config: ", self.status > >> >> > >> >> Wang Chao> def printFinalState(self) : > >> >> Wang Chao> """ Show the final problem state """ > >> >> Wang Chao> print "Final room config: ", self.status > >> >> > >> >> > >> >> > >> >> > >> >> Wang Chao> def execute_action(self, agent, action): > >> >> Wang Chao> """Change agent's location and/or > >> >> Wang Chao> location's status; track performance. > >> >> Wang Chao> Score 10 for each dirt cleaned; -1 for each move.""" > >> >> Wang Chao> if action == 'Right': > >> >> Wang Chao> agent.location = (1,0) > >> >> Wang Chao> agent.performance -= 1 > >> >> Wang Chao> elif action == 'Left': > >> >> Wang Chao> agent.location = (0,0) > >> >> Wang Chao> agent.performance -= 1 > >> >> Wang Chao> elif action == 'Suck': > >> >> Wang Chao> if self.status[agent.location] == 'Dirty': > >> >> Wang Chao> agent.performance += 10 > >> >> Wang Chao> self.status[agent.location] = 'Clean' > >> >> > >> >> Wang Chao> def default_location(self, object): > >> >> Wang Chao> "Agents start in either location at random." > >> >> Wang Chao> return random.choice([(0,0), (1,0)]) > >> >> > >> >> > >> >> > >> >> > >> >> > >> >> > >> >> Wang Chao> 附:Agents.py > >> >> > >> >> > >> >> > >> >> Wang Chao> import random > >> >> > >> >> Wang Chao> ### global variable holding all possible agent actions > >> >> Wang Chao> agent_actions = ['Left', 'Right', 'Suck'] > >> >> > >> >> > >> >> Wang Chao> class Agent : > >> >> Wang Chao> """An Agent is a subclass of Object with one required slot, > >> >> Wang Chao> .program, which should hold a function that takes one argument, the > >> >> Wang Chao> percept, and returns an action. (What > >> >> Wang Chao> counts as a percept or action > >> >> Wang Chao> will depend on the specific environment in > >> >> Wang Chao> which the agent exists.) > >> >> Wang Chao> Note that 'program' is a slot, not a > >> >> Wang Chao> method. If it were a method, > >> >> Wang Chao> then the program could 'cheat' and look at aspects of the agent. > >> >> Wang Chao> It's not supposed to do that: the program can only look at the > >> >> Wang Chao> percepts. An agent program that needs a > >> >> Wang Chao> model of the world (and of > >> >> Wang Chao> the agent itself) will have to build and maintain its own model. > >> >> Wang Chao> There is an optional slots, .performance, > >> >> Wang Chao> which is a number giving > >> >> Wang Chao> the performance measure of the agent in its environment.""" > >> >> > >> >> Wang Chao> def __init__(self): > >> >> Wang Chao> self.alive = True > >> >> > >> >> Wang Chao> def program(percept): > >> >> Wang Chao> return raw_input('Percept=%s; action? ' % percept) > >> >> > >> >> > >> >> Wang Chao> ### In the 2 room environment, there are three > >> >> Wang Chao> actions: Left, Right and Suck > >> >> > >> >> Wang Chao> class RandomAgent(Agent): > >> >> Wang Chao> "An agent that chooses an action at random, ignoring all percepts." > >> >> Wang Chao> def __init__(self, actions): > >> >> Wang Chao> self.actions = actions > >> >> > >> >> Wang Chao> def program(self, percept) : > >> >> Wang Chao> action = random.choice(self.actions) > >> >> Wang Chao> print "Percept: %s Action: %s" % (percept, action) > >> >> Wang Chao> return action > >> >> > >> >> > >> >> > >> >> ********************************************/ > >> >> > >> >> -- > >> >> Free as in Freedom > >> >> > >> >> Zoom.Quiet > >> >> > >> >> #=========================================# > >> >> ]Time is unimportant, only life important![ > >> >> #=========================================# > >> >> > >> >> sender is the Bat!3.0 > >> >> > >> >> _______________________________________________ > >> >> python-chinese list > >> >> python-chinese at lists.python.cn > >> >> http://python.cn/mailman/listinfo/python-chinese > >> >> > >> >> _______________________________________________ > >> pl w> python-chinese list > >> pl w> python-chinese at lists.python.cn > >> pl w> http://python.cn/mailman/listinfo/python-chinese > >> > >> > >> > >> > >> > >> > >> pl w> perrin > >> pl w> pl_cs at yahoo.com.cn > >> > >> pl w> 祝你有美好的每一天~ > >> pl w> -----让我们共同抑制日货,振兴中国 > >> > >> > >> > >> pl w> --------------------------------- > >> pl w> Do You Yahoo!? > >> pl w> 150万曲MP3疯狂搜,带您闯入音乐殿堂 > >> pl w> 美女明星应有尽有,搜遍美图、艳图和酷图 > >> pl w> 1G就是1000兆,雅虎电邮自助扩容! > >> > >> > >> ********************************************/ > >> > >> -- > >> Free as in Freedom > >> > >> Zoom.Quiet > >> > >> #=========================================# > >> ]Time is unimportant, only life important![ > >> #=========================================# > >> > >> sender is the Bat!3.0 > >> > > > tocer> -------------------------------------------------------------------------------- > > > >> _______________________________________________ > >> python-chinese list > >> python-chinese at lists.python.cn > >> http://python.cn/mailman/listinfo/python-chinese > >> > > > ********************************************/ > > -- > Free as in Freedom > > Zoom.Quiet > > #=========================================# > ]Time is unimportant, only life important![ > #=========================================# > > sender is the Bat!3.0 > -------------------------------------------------------------------------------- > _______________________________________________ > python-chinese list > python-chinese at lists.python.cn > http://python.cn/mailman/listinfo/python-chinese >
Zeuux © 2025
京ICP备05028076号